Metabolic fate of polyphenols in the human superorganism.

نویسندگان

  • John van Duynhoven
  • Elaine E Vaughan
  • Doris M Jacobs
  • Robèr A Kemperman
  • Ewoud J J van Velzen
  • Gabriele Gross
  • Laure C Roger
  • Sam Possemiers
  • Age K Smilde
  • Joël Doré
  • Johan A Westerhuis
  • Tom Van de Wiele
چکیده

Dietary polyphenols are components of many foods such as tea, fruit, and vegetables and are associated with several beneficial health effects although, so far, largely based on epidemiological studies. The intact forms of complex dietary polyphenols have limited bioavailability, with low circulating levels in plasma. A major part of the polyphenols persists in the colon, where the resident microbiota produce metabolites that can undergo further metabolism upon entering systemic circulation. Unraveling the complex metabolic fate of polyphenols in this human superorganism requires joint deployment of in vitro and humanized mouse models and human intervention trials. Within these systems, the variation in diversity and functionality of the colonic microbiota can increasingly be captured by rapidly developing microbiomics and metabolomics technologies. Furthermore, metabolomics is coming to grips with the large biological variation superimposed on relatively subtle effects of dietary interventions. In particular when metabolomics is deployed in conjunction with a longitudinal study design, quantitative nutrikinetic signatures can be obtained. These signatures can be used to define nutritional phenotypes with different kinetic characteristics for the bioconversion capacity for polyphenols. Bottom-up as well as top-down approaches need to be pursued to link gut microbial diversity to functionality in nutritional phenotypes and, ultimately, to bioactivity of polyphenols. This approach will pave the way for personalization of nutrition based on gut microbial functionality of individuals or populations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methylated flavonoids have greatly improved intestinal absorption and metabolic stability.

To better understand the relationship between the chemical structure and biological fate of dietary polyphenols, the hepatic metabolic stability and intestinal absorption of methylated polyphenols, in comparison with unmethylated polyphenols, were investigated in pooled human liver S9 fraction and human colon adenocarcinoma (Caco-2) cells. Consistent with previous in vivo studies, the two well ...

متن کامل

Metabolomics of a superorganism.

The human can be thought of as a human-microbe hybrid, and the health of this superorganism will be affected by intrinsic properties such as human genetics, diurnal cycles, and age and by extrinsic factors such as lifestyle choices (food and drink, drug intake) and the acquisition of a stable "healthy" gut microflora (the so-called microbiome). Alterations in this superorganism will be manifest...

متن کامل

Interactions between CYP3A4 and Dietary Polyphenols

The human cytochrome P450 enzymes (P450s) catalyze oxidative reactions of a broad spectrum of substrates and play a critical role in the metabolism of xenobiotics, such as drugs and dietary compounds. CYP3A4 is known to be the main enzyme involved in the metabolism of drugs and most other xenobiotics. Dietary compounds, of which polyphenolics are the most studied, have been shown to interact wi...

متن کامل

O-Methylation of tea polyphenols catalyzed by human placental cytosolic catechol-O-methyltransferase.

In the present study, we evaluated the metabolic O-methylation of several catechol-containing tea polyphenols by human placental catechol-O-methyltransferase (COMT). (-)-Epicatechin, (+)-epicatechin, and (-)-epigallocatechin were good substrates for metabolic O-methylation by placental cytosolic COMT (150-500 pmol/mg of protein/min), but (-)-epicatechin gallate and (-)-epigallocatechin gallate ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2011